

1

CGIKit User Guide

Copyright 2003-2004 SPICE OF LIFE

Contents

Contents

Chapter 1 Install

System Requirements 1

Installing CGIKit 1

Loading Libraries 2

Chapter 2 Architecture

Basic Concept 3

Component 4

Composition 4

Template (.html) 4

Binding (.ckd) 5

Code (.rb) 6

Elements 7

Attribute 7

List of Elements 8

Process of CGIKit 9

Startup 9

After startup 10

Chapter 3 Dynamic Elements

HTML common attributes 12
i

Contents

General elements 12

CKString 12

CKHyperlink 13

CKImage 13

Flow control 14

CKConditional 14

CKRepetition 15

Form 15

CKForm 15

CKTextField 16

CKText 16

CKCheckbox 17

CKRadioButton 19

CKPopUpButton 20

CKBrowser 21

CKSubmitButton 21

CKResetButton 22

CKFileUpload 22

Reusable Components 22

CKFrame 22

CKComponent 23

CKContent 24

CKGenericElement 25

Chapter 4 Cookie

Class CKCookie 26

Controlling cookie objects 26

Creating cookies 26

Getting cookies from a request object 27
ii

Contents

Setting cookies to a response object 27

Removing cookies from browser 27

Removing cookies from a response object 28

Chapter 5 Session Management

Automatic session management 29

Basic control 29

Getting sessions 29

Getting and setting session data 29

Saving sessions 30

Closing or clearing sessions 30

Saving session IDs 30

Authorization 31

Session expiration time 31

Browsers and IP addresses 31

Handling session errors 31

Database manager 32

Other notes 32

Permission error 32

Deleting session files 32

Chapter 6 Deploying Applications

Installing applications 33

URLs for the applications 33

Managing resources 34

Resources and web server resources 34
iii

Contents

Accessing to resources 34

An example: displaying an image file 34

Debugging 35

Running on command-line 35

Checking attributes of elements 36

Logging 36

Performance tuning applications 37

strscan 37

mod_ruby 37
iv

Install

Install

System Requirements

- Operating system like UNIX

- Ruby 1.8.0 or later

The following can speed up CGIKit.

- mod_ruby

Installing CGIKit

To install CGIKit, use make command or copy libraries to directory under unix
path variable.

List 1-1: Installing with install.rb

% tar xzf cgikit-xxx.tar.gz
% cd cgikit-xxx
% ruby install.rb config
% sudo ruby install.rb install

List 1-2: Installing with copying libraries

% tar xzf cgikit-xxx.tar.gz
% cd cgikit-xxx
% sudo cp lib/* /usr/local/lib/ruby/lib/site_ruby/1.8

Loading Libraries

You must load cgikit.rb to use CGIKit. Load with "require" if you installed, or
add path of directory for CGIKit before loading.

List 1-3: Loading installed CGIKit

require 'cgikit'
1

Install

List 1-4: Loading without installing CGIKit

Path for CGIKit
$LOAD_PATH << './cgikit'
require 'cgikit'
2

Architecture

Architecture

Basic Concept

In CGIKit, web pages are created by components, which uses some elements. So,
elements and components play an important role.

Component is consisted of template, ckd file and Ruby script. By using these three
parts, components are changed to HTML. In CGI programs, it often occurs that
HTML is embedded in program. This architttttecture makes it possible to separate
View(template) and Logic(Ruby script).

Element is something like HTML tag peculiar to CGIKit. Elements are used in
template of components. The elements used in template are outputed as HTML by
binding the elements to Ruby’s methods or objects.

Figure 2-1: Architecture

Development in CGIKit is that of components by combining CGIKit elements and
Ruby’s methods/objects. CGIKit provides many varied elements. One shows Ruby

HelloWorld

class MainPage < CKComponent

end

Code (MainPage.rb)

<html>

<head>

<title>Hello World</title>

</head>

<body>

<h1>

</h1>

</body>

</html>

Templete (MainPage.html)

: CKString {

value =

}

Binding (MainPage.ckd)

Browser

Hello World!

<CGIKIT NAME=HelloWorld/>

HelloWorld

sayHello;

def sayHello

"Hello World!"

end

<html>

<head>

<title>Hello World</

title>

</head>

<body>

<h1>

</h1>

</body>

</html>

HTML

Hello World!
3

Architecture

object simply. Another judges its condition and decides whether it shows HTML or
not.

Component

Component represents some part of web page (component sometimes represents
the while web page). Depending on client’s request, CGIKit creates components
and converts them to HTML.

Composition

Component has 3 parts, template, binding and code. Template is HTML and Code
is Ruby script. In binding (ckd file), you can determine types of the elements used
in template and the behavior of the elements. According to this definitions, CGIKit
binds template to code.

Normally, these files (HTML, ckd file and Ruby script) of component are located
in the same directory whose name is the same as component’s name. In addition to
it, the names of HTML, ckd file and Ruby script are different only in their suffix.

For example, if you want to create "MainPage" component, you name HTML, ckd
file, and Ruby script like this.

List 2-1: Directory for a component

HelloWorld.cgi
/MainPage
 MainPage.html
 MainPage.ckd
 MainPage.rb

Template (.html)

In template, you write normal HTML and CGIKit elements. You can locate ele-
ments as "<CGIKIT>". CGIKit tag is case-insensitive.

This is an example.

List 2-2: HelloWorld (MainPage.html)

<html>
<head>
<title>Hello World</title>
</head>
<body>

<h1>
<cgikit name="HelloWorld"></cgikit>
</h1>
4

Architecture

</body>
</html>

CGIKit tag has only one attribute, "name". And, the value of "name" attribute is
also used in ckd file. The value don’t need to be enclosed by double quotation mark
("). Of course, you can enclose the value by the mark.

Tags that have no bodies can be empty tags. Using empty tags for elements like
CKString, CKSubmitButton, etc., is easy to write CGIKit tags.

List 2-3: Empty tag

<cgikit name="HelloWorld"/>

Comment

Comment of HTML is interpreted because it is necessary to include something like
CSS and Javascript. If you want to comment out some parts of a template, you use
"<!--- ... --->". The format is like HTML comments, but with an additional
hyphen.

Binding (.ckd)

In ckd file, you decide types of the elements and their behavior. Please be care of
the grammar of ckd file. Its grammar is different from that of Ruby or HTML. In
ckd file, all the attributes of the element are enclosed by braces, "{}", and an
attribute is separated by semicolon, ";". You can omit semicolon with using return
as term.

List 2-4: ckd file

name of element : type of element {
 attribute = value

 # semicolon
 attribute = value; attribute = value;
}

The value of the attribute is Ruby’s method, string, number and true/false. When
you use string in ckd file, you surround the value with single/double quotation
mark.

List 2-5: HelloWorld (MainPage.ckd)

HelloWorld : CKString {
 value = sayHello;
}

5

Architecture

In this ckd file, you declare that you use "HelloWorld" element whose type is
CKString and that "say_hello" method of HelloWorld class is set to "value"
attribute of "HelloWorld" element.

Literals

You can use these literals in binding files.

Code (.rb)

Code is Ruby script. The name of component’s class must be the same as compo-
nent’s name. Besides, the component’s class must inherit CKComponent.

List 2-6: HelloWorld (MainPage.rb)

class MainPage < CKComponent
 def sayHello
 "Hello World!"
 end
end

To initialize in component, use init() that initializing method without arguments
instead of initialize().

Process of Binding

CGIKit binds elements in template to code. After binding, CGIKit shows HTML
by converting the elements. Compoents and elements are changed to HTML like
below.

1. CGIKit reads template of the specified component.

2. When "<CGIKIT>" is found, CGIKit searches the entry in ckd file which corre-

sponds to the CGIKit tag in template. For example, if "<cgikit name=foo>"

is found in template, CGIKit looks for the entry of "foo" in ckd file.

3. The Elements are bound to code.

Table 2-1: Literals

Literal Format

String ’abc’, "string", ...

Digit 1, 2, 3, 4, 5, ...

true/false, nil true, false, nil, ...

Array [array], [0], [1], ...

Hash [key], [’abc’], ["string"], [0], [1], ...
6

Architecture
4. The Elements are converted to HTML.

Accessor Method

You need not to define accessor methods for instance variables to use with ele-
ments. CGIKit uses accessors if defined, or accesses instance variables directly.

Form Data

In binding, the form data is assinged to the component through the methods to
which you bind textfield, button and so on. You don’t forget to define accessor
methods.

Elements

Element is a framework which shows Ruby’s objects/methods as HTML. To use
elements is the core of CGIKit development.

Because component is also one type of elements, components can be nested. As a
result of it, the web page is formed by some components and elements. In this case,
the top-level component usually determines the layout of the web page, other com-
ponents and elements gives the top-level component their result of HTML conver-
sion.

Attribute

Element has attributes which determine its behavior. By binding these attributes to
Ruby’s objects and methods, the objects are embeded in the outputed HTML.
Because Ruby objects are accessed through Ruby’s method, all the subjects to bind
are ckd’s literal or Ruby’s methods.

List of Elements

Currently, there are 19 types of elements. CKString is used the most frequently.
This element simply shows the result of its binding. Other than CKString, there are
varied elements. For example, CKConditional controls the display of its content.
CKRepetition shows its content repeatedly by iterating "list" attribute. Here, we
introduce some elements briefly. The detail is available as "Dynamic Elements".

Table 2-2: General

Element Description

CKString Shows the result of binding simply.

CKHyperlink Links to other component or normal URL.
7

Architecture
CKImage Shows an image in resource directory.

Table 2-3: Flow Control

Element Description

CKConditional Decides whether the element shows its content by the
result of binding.

CKRepetition Repeats its content.

Table 2-4: Form

Element Description

CKForm Shows a HTML form. The form data is assigned to a
component through bound methods.

CKTextField Shows a textfield.

CKRadioButton Shows a radiobutton.

CKCheckbox Shows a checkbox.

CKPopUpButton Shows a pop-up button.

CKText Shows a textarea.

CKBrowser Shows a list where you can select multiple items.

CKFileUpload Shows a file-upload field.

CKSubmitButton Shows a submit-button.

CKResetButton Shows a reset-button.

Table 2-5: Coordination of Component

Element Description

CKFrame Sets components in frame.

CKComponent Locates elements or components in itself.

CKContent Shows the grandparent’s content.

CKGenericElement Generates a generic HTML tag.

Table 2-2: General

Element Description
8

Architecture
Process of CGIKit

Startup

The startup of CGIKit is carried out by startup-program as cgi program. The star-
tup-program is different from components. Normally, it is not neccessary to require
components directly in startup-program.

The startup-program does three things.

1. Creates a CKApplication object.

2. Sets parameters of the CKApplication object.

3. Calls CKApplication#run.

Creates a CKApplication object

CKApplication is the central class in CGIKit. This class has the parameters, for
example, CGI program’s path, MainPage and component path. You can create a
CKApplication object by calling CKApplication.new simply.

List 2-7: Creating a CKApplication object

app = CKApplication.new

Sets parameters of the CKApplication object

CKApplication has many attributes. Here, two of them are introduced. The detail is
explained in CKApplication’s RDoc document.

Calls CKApplication#run

Finally, you call CKApplication#run. By this method, CKApplication loads a com-
ponent and initializes it.

When CKApplication#run is called, CKApplication decides what component is
shown. CKApplication has two ways to decide the name of the top-level compo-
nent to be shown. One way is CKApplication#element_id and another is query

Table 2-6: Parameters of CKApplication objects

Parameter Description

element_id Component name which CGIKit shows.

main Component name which CGIKit shows if target is
not set. The default value is "MainPage".
9

Architecture
data. If CKApplication#element_id is set as CKElementID object in startup-pro-
gram, CKApplication loads the component whose name is CKApplica-
tion#element_id. If CKApplication#element_id is not set, CKApplication tries to
decide the component’s name from query data. For example, when a client
accesses "http://localhost/hello.cgi?element_id=FooBar" CKApplication
loads FooBar component. If both of ways fails, CKApplication load the compo-
nent specified by CKApplication#main.

HelloWorld.cgi

This is one of the simplest startup-program.

List 2-8: HelloWorld (HelloWorld.cgi)

#!/usr/local/bin/ruby

require 'cgikit'

app = CKApplication.new
app.run

After startup

Ordinally, you don’t have to know the detail after startup. But, if you want to know
about the process after startup, see the source and document of CKApplication.
The document is provided in RDoc document.

Here, the process after startup is explained succinctly.

1. When CKApplication#run is called, the CKApplication object creates a

CKAdapter object, which is an interface between CGIKit and a web server.

2. The CKApplication object gets a request object from the CKAdapter object.

Then, as explained above, the CKApplication object determines the compo-

nent to be shown from the parameters of request object.

3. The CKApplication object loads the specified component and converts it to

HTML.

4. The HTML is added to a response object created by the CKApplication object.

The CKApplication object sends the response object to the CKAdapter object.

5. The CKAdapter object receives the response object and shows it to the

browser.
10

Dynamic Elements
Dynamic Elements

Optional HTML attributes and other attribute

All elements can have optional HTML attributes other attribute (elements without
displaying HTML tags like CKString and CKRepetition, etc. do nothing). If you
set attributes of HTML as key and value for elements, the HTML attributes are
added for output HTML tag.

other attribute adds setted string to HTML tag. The attribute is used to set HTML
attribute without value.

List 3-1: Setting optional HTML attributes and “other” attribute

Link : CKHyperlink {
 href = “http://www.foobar.com/“
 key = “value”
 other = “anykeywords“
}

Validating input

You can validate input with using validate and pass attributes for CKTextField
and CKText. If the input pass validation, variable for pass attribute is true, or
false.

Example: validating mail addresses

For example, we validate a text field to input mail addresses. We need to write
code for checking whether the mail addresses exist or not, but we can check format
of them with validating input.

In this case, we check the addresses include at mark (@). If the addresses don t
include at mark, pass_mail variable is true.

List 3-2: Validating mail addresses

Mail : CKTextField {
 value = mail
 validate = "mail =~ /[^@]+@(.+)/"
11

Dynamic Elements
 pass = pass_mail
}

This example is attached to archive as Registration application.

Format for rules

Examples of format are the following.

List 3-3: Examples of format

name == ‘MyName’
(title =~ /R/) and (title.size > 10)
not (count < 20)

Format for rules is attribute operator value (Attribute is accessor method or
instance variable defined in component class). You can join rules with and/or, use
not to deny rules. If you use the operators, enclose rules with parenthesis.

Converting data types

Last rule In the above example, set value as number. Form data is setted as string
for the valule, but the data is converted temporarily when validating. For example,
the following validates input as number whether greater than or equal to 100 and
less than equal to 500.

List 3-4: Validating input as number

Number : CKTextField {
 value = number
 validate = “(number >= 100) and (number <= 500)“
 pass = pass_number
}

Operators

Operators can be included in rules are the following.

Table 3-1: Operators in rules

Operator Description

== Both sides are equal.

!= Both sides are not equal.

> Left is greater than right.

< Left is less then right.
12

Dynamic Elements
General elements

CKString

CKString shows the result of binding as string.

Required attribute: value

CKHyperlink

CKHyperlink generates a hypertext link.

Required attributes: action, href or page

>= Left is greater than or equal to right.

<= Left is less than or equal to right.

=~ Pattern matching.

Table 3-1: Operators in rules

Operator Description

Table 3-2: Attributes of CKString

Attribute Type Description

value String Text to be displayed.

escape true/false Escapes HTML control characters in value if
the escape is true. The default value is true.

empty String Text that is substituted for value when the
value is nil.

Table 3-3: Attributes of CKHyperlink

Attribute Type Description

action CKComponent Method to be invoked when the link is clicked.

enabled true/false Generates a non-active link if the value is true.

href String You specify the URL to other web page
directly. This attribute prevails over action or
page attribute.
13

Dynamic Elements
CKImage

Creates an image tag.

Required attributes: file, src, or data

page String Name of component to display when the link is
clicked.

string String Text of the link. If the body of CKHyperlink tag
is not empty, the body is displayed. For exam-
ple, if the template includes <cgikit
name=link>foo</cgikit>, this element shows
"foo" as the link.

target String target attribute of HTML’s <a> tag.

secure true/false Appends "https://" to the URL if the value is
true. The default value is false.

query Hash Hash as the query string. The value of query
attribute is converted to string. Then, the string
is added to append the URL.

Table 3-4: Attributes of CKImage

Attribute Type Description

alt String Alternative text to the picture.

border Integer Size of image border.

width Integer Width of image.

height Integer Height of image.

file String Name of an image file in web server resource
directory.

src String You specify an image file directly. This value
prevails over file attribute.

data CKByteData A CKByteData object to display as image. If
you create the object without resource manager,
You must use this with mime attribute.

mime String MIME type for a resource of data attribute.

Table 3-3: Attributes of CKHyperlink

Attribute Type Description
14

Dynamic Elements
Flow control

CKConditional

Controls generating HTML.

Required attribute: condition

CKRepetition

A CKRepeition object repeats its contents.

Required attributes: list and item, or count

Table 3-5: Attributes of CKConditional

Attribute Type Description

condition true/false If the value is true and negate is false, the body
of the CKCoditional tag is displayed.

negate true/false Inverts the meaning of the condition.

Table 3-6: Contorol Table

condition negate Result

true false show

false false not show

true true not show

false true show

Table 3-7: Attributes of CKRepetition

Attribute Type Description

count Integer CKRepeition repeats its contents this number of
times.

list Enumerable Array which is iterated through.

item - Current item when the list is iterated through.

index Integer Index of the current item.
15

Dynamic Elements
Form

CKForm

Creates a fill-in form. Dynamic Elements of form, for example, CKBrowser,
CKCheckbox, CKRadioButton, CKPopUpButton, CKText, CKTextField, CKSub-
mitButton and CKResetButton, are used within CKForm or HTML form. Required
attributes are none.

To upload files with form, set enctype attribute to multipart/form-data or fileup-
load attribute to true. Even if you set multipart form, form data is processed as
String excepted data setted content type. The data is used by CKFileUpload as
CKByteData.

CKTextField

Creates a text input field. This element must be used within CKForm or HTML
form.

Table 3-8: Attributes of CKForm

Attribute Type Description

method String Method to send form data. You can use POST,
GET or HEAD as the value.

enctype String Method to encode form data. Set "multipart/
form-data" to this attribute when using
CKFileUpload.

href String URL to which the browser directs.

target String Frame in a frameset that receive the page.

query Hash Hash as the query string. The value of query
attribute is converted to string. Then, the string
is added to append the URL.

fileupload true/false If you set this attribute to true, enctype
attribute is setted to "multipart/form-data".
You can use this instead of enctype when
using CKFileUpload.
16

Dynamic Elements
Required attribute: value

CKText

Creates a text area. This element must be used within CKForm or HTML form.

Required attribute: value

CKCheckbox

Creates a checkbox. This element must be used within CKForm or HTML form.

Table 3-9: Attributes of CKTextField

Attribute Type Description

type String Type of the text field. text is for a normal text
input field, password is for a password field
and hidden is for a hidden field.

value String Value of the text field. If you set an accessor
method to this element, the form data is set to a
component automatically by the method.

size Integer Size of the text field.

maxlength Integer Max length of data for the text field.

validate String Format string to validate input value.

pass true/false If validating is passed, the value is true.

enabled true/false If the value is false, the element appears but is
not active.

Table 3-10: Attributes of CKText

Attribute Type Description

value String Value of the text area.

columns Integer Column size.

rows Integer Row size.

validate String Format string to validate input value.

pass true/false If validating is passed, the value is true.

enabled true/false If the value is false, the element appears but is
not active.
17

Dynamic Elements
Required attributes: selection and value, or checked

You use this element in two ways. One it the way to use checked attribute. The
other is the way to use both selection and value attributes.

checked attribute

If you use checkboxes with checked attribute, the checkboxes are controlled with
on/off.

List 3-5: Template

<cgikit name=Form>
<cgikit name=Checkbox1>One</cgikit>
<cgikit name=Checkbox2>Two</cgikit>
<cgikit name=Checkbox3>Three</cgikit>
<cgikit name=Submit/>
</cgikit>

List 3-6: Binding

Form : CKForm {
}

Checkbox1 : CKCheckbox {
 checked = checkedOne;
}

Checkbox2 : CKCheckbox {
 checked = checkedTwo;
}

Checkbox3 : CKCheckbox {
 checked = checkedThree;
}

Table 3-11: Attributes of CKCheckbox

Attribute Type Description

checked true/false If neither value nor selection attribute is nil
and the value of selection is equal to that of
value, the check box is checked.

value String When the check box is checked, the value of
value attribute is set to the component by the
method specified by selection attribute.

selection Array Object that the user chose from the check box.

enabled true/false If the value is false, the element appears but is
not active.
18

Dynamic Elements
Submit : CKSubmitButton {
}

List 3-7: Code

class Checkbox < CKComponent
 attr_accessor :checkedOne, :checkedTwo, :checkedThree
end

The variables are substituted true when the checkboxes clicked.

value and selection attributes

Another usage of CKCheckbox is combination with selection and value
attributes. selection attribute is substituted value of value attribute when a
checkbox clicked. Checkboxes turn on if values of selection and value
attributes are equal.

List 3-8: Template

<cgikit name=Form>
<cgikit name=Checkbox1>One</cgikit>
<cgikit name=Checkbox2>Two</cgikit>
<cgikit name=Checkbox3>Three</cgikit>
<cgikit name=Submit></cgikit>
</cgikit>

List 3-9: Binding

Form : CKForm {
}

Checkbox1 : CKCheckbox {
 value = "One";
 selection = checkedOne;
}

Checkbox2 : CKCheckbox {
 value = "Two";
 selection = checkedTwo;
}

Checkbox3 : CKCheckbox {
 value = "Three";
 selection = checkedThree;
}

Submit : CKSubmitButton {
}

List 3-10: Code
19

Dynamic Elements
class Checkbox < CKComponent
 attr_accessor :checkedOne, :checkedTwo, :checkedThree
end

CKRadioButton

Creates a radio button. This element must be used within CKForm or HTML form.

Required attributes: selection and value, or checked

This is a sample with checked attribute.

List 3-11: Template

<cgikit name=Form>
<cgikit name=Radio1>One</cgikit>
<cgikit name=Radio2>Two</cgikit>
<cgikit name=Radio3>Three</cgikit>
<cgikit name=Submit></cgikit>
</cgikit>

List 3-12: Binding

Form : CKForm {
}

Radio1 : CKCheckbox {
 name = "radio";
 checked = checkedOneTwoThree;
}

Radio2 : CKCheckbox {
 name = "radio";
 checked = checkedOneTwoThree;
}

Table 3-12: Attributes of CKRadioButton

Attribute Type Description

name String Name that identifies the radio button’s group.

checked true/false If neither value nor selection attribute is nil
and the value of selection is equal to that of
value, the check box is checked.

value String When the check box is checked, the value of
value attribute is set to the component by the
method specified by selection attribute.

selection String Object that the user chose from the check box.

enabled true/false If the value is false, the element appears but is
not active.
20

Dynamic Elements
Radio3 : CKCheckbox {
 name = "radio";
 checked = checkedOneTwoThree;
}

Submit : CKSubmitButton {
}

List 3-13: Code

class Checkbox < CKComponent
Å@Å@attr_accessor :checkedOneTwoThree
end

CKPopUpButton

Creates a pop-up menu. This element must be used within CKForm or HTML
form.

Required attribute: list

CKBrowser

Creates a list whose multiple items can be selected. This element must be used
within CKForm or HTML form.

Table 3-13: Attributes of CKPopUpButton

Attribute Type Description

escape true/false Escapes HTML control characters in the items
of the list if the escape is true. The default
value is true.

list Enumerable Array which is iterated through.

default String The first item if no item is selected.

selected String Item that are chosen from the selection list.

values Array Array which is value for each value attributes
of <option> elements.

enabled true/false If the value is false, the element appears but is
not active.
21

Dynamic Elements
Required attribute: list

CKSubmitButton

Creates a submit button. This element must be used within HTML form. Required
attributes are none.

CKResetButton

Creates a reset button. This element must be used within CKForm or HTML form.
Required attributes are none.

Table 3-14: Attributes of CKBrowser

Attribute Type Description

escape true/false Escapes HTML control characters in the items
of the list if the escape is true. The default
value is true.

list Enumerable Array which is iterated through.

selected Array Items which are chosen from the list.

values Array Array which is value for each value attributes
of <option> elements.

multiple true/false Multiple items of the list can be selected if the
value is true.

size Integer Size of item in appearance.

enabled true/false If the value is false, the element appears but is
not active.

Table 3-15: Attributes of CKSubmitButton

Attribute Type Description

action CKComponent Method to invoke when the button is clicked.

value String Title of the button.

enabled true/false If the value is false, the element appears but is
not active. In addition, it doesn’t send the form
data although the button is clicked.

Table 3-16: Attributes of CKResetButton

Attribute Type Description

value String Title of the button.
22

Dynamic Elements
CKFileUpload

CKFileUpload generates an input form to upload files. To use this, set enctype
attribute of CKForm to "multipart/form-data".

Required attributes: data and file

Reusable Components

CKFrame

CKFrame generates frame tag in HTML.

Required attributes: page or src or value

To use frames, ready components that include framesets and CKFrame elements
for frame components.

List 3-14: Template

<frameset cols="200,*">
<cgikit name=Index></cgikit>

Table 3-17: Attributes of CKFileUpload

Attribute Type Description

data CKByteData Variable of the attribute is set the uploaded file
as a CKByteData object.

file String Path of the uploaded file.

enabled true/false If the value is false, the element appears but is
not active.

Table 3-18: Attributes of CKFrame

Attribute Type Description

name String name attribute of HTML’s <frame> tag.

page String Name of component that supplies the content
for the frame.

src String You specify the URL or file for the frame.

value CKComponent Method that supplies the content. The parent of
this element must have the specified method.
23

Dynamic Elements
<cgikit name=Contents></cgikit>
</frameset>

List 3-15: Binding

Index : CKFrame {
 name = "Index";
 page = "IndexPage";
}

Contents : CKFrame {
 name = "Contents";
 page = "IntroductionPage";
}

CKComponent

You can use one component in another component like elements. It means that it is
possible to nest components with specifying in binding files.

List 3-16: Nesting MainPage component

OtherComponent : MainPage {}

Components has no attributes like elements. Instead of this, components’ instance
variables are as attributes.

List 3-17: Code (MainPage)

class MainPage < CKComponent
 attr_accessor :title
end

List 3-18: Binding (parent's component for the MainPage)

OtherComponent : MainPage {
 title = "Example for CKComponent";
}

MainPage component’s title attribute is substituted "Example for CKCompo-
nent".

CKPartsMaker

You can write a component which converts itself to a part of a web page. In some
cases, a web page is composed of these components. These components are called
parts component. Parts componente is recommended to include CKPartsMaker. A
component which includes CKPartsMaker isn’t displayed even if its name is set to
the CKApplication#target.
24

Dynamic Elements
A name of parts component is recommended to have "Parts" or Component at
the end of the name to distinguish it from page component.

CKContent

CKContent is used in nested components. This element tag in the template is
replaced with a part of the template of its grandparent component. CKContent has
no attributes.

List 3-19: Template (parent's component)

<cgikit name=OtherComponent>Content of parent</cgikit>

List 3-20: Binding (parent's component)

OtherComponent : MainPage {}

List 3-21: Template (nested component)

<cgikit name=Content></cgikit>

List 3-22: Binding (nested component)

Content : CKContent {}

List 3-23: Result

Content of parent

CKGenericElement

CKGenericElement generates generic HTML tags.

Table 3-19: Object attributes of CKPartsMaker module

Object attribute Description

substitute_page When CGIKit recieves requests to show compo-
nent parts, CGIKit shows the page specified by
this attribute. A main page of an application is dis-
played when the value is not defined.
25

Dynamic Elements
Required attribute: tag

You can define other voluntary attributes. The attributes is appended to the tag in
format as "attribute=value".

Table 3-20: Attributes of CKGenericElement

Attribute Type Description

tag String Name of the HTML tag. If the attribute is
nil, body enclosed by the element or string
attribute are displayed.

enabled true/false Enables or disables the tag. If the attribute is
false, body enclosed by the element or
string attribute are displayed.

string String String to display if body enclosed by the
element isn’t exist.

option String String to append for the open tag. For exam-
ple, checked or selected.

form_value String If the element is form, the attribute is setted
form datas as a string.

form_values Array If the element is form, the attribute is setted
form datas as an array.

invoke_action CKComponent If the element is executable (hyperlink, but-
ton, etc.), the method is called when
clicked.
26

Cookie
Cookie

CKCookie is a class for cookie. To send cookies to a browser needs to create
cookie objects and set them to a response object. Instead of creating cookie
objects, you can also get cookie objects from a request object.

Class CKCookie

CKCookie objects have a pair of a cookie name and value. If you make the objects
have multiple values for one name, you must write code by yourself.

Controlling cookie objects

Creating cookies

Give arguments of initialize() a name or a pair of name/value. The value of cookie
is omittable.

List 4-1: Creating cookies

cookie = CKCookie.new(name, value)

Table 4-1: Object attributes

Attributes Description

name Name of the cookie.

value Value of the cookie.

path Restricts the cookie in the site.

domain Domain that can receive the cookie.

expires Expiry date. You set Time object to the cookie
object. The value is formatted when the cookie is
returned.

secure Decides whether the cookie is encrypted or not.
27

Cookie
Getting cookies from a request object

CKRequest has some methods for getting cookies. The methods are cookie(key),
cookies, cookie_value(key), cookie_values(key). You can get CKRequest objects
by CKApplication#request.

Setting cookies to a response object

CKResponse has methods for setting cookies. These methods are defined in
CKMessage, the superclass of CKResponse. Use add_cookie(cookie) and
remove_cookie(cookie).

List 4-2: Adding a cookie

cookie = CKCookie('name')
application.response.add_cookie(cookie)

Removing cookies from browser

Send cookies with the same name to browser. If you set past expiration time for the
cookie when of that, browser removes the cookie completely.

List 4-3: Removing cookies from browser

cookie = CKCookie "name"
cookie.expire = Time.new - 60
response.add_cookie cookie

Removing cookies from a response object

CKResponse#remove_cookie removes cookies in CKResponse object.

Table 4-2: Getting cookies methods of CKRequest

Method Description

cookie(key) Returns a CKCookie object whose key is the same
as the argument.

cookies Returns an array of CKCookie objects.

cookie_value(key) Returns the value of CKCookie object whose key
is the the same as the argument.

cookie_values(key) If the argument is nil(by default, argument is nil.),
this method returns an array which has all the val-
ues of cookies. Otherwise, it returns an array
which has the values of cookies specified by the
argument.
28

Cookie
List 4-4: Removing cookies from a response object

application.response.remove_cookie('name')
29

Session Management
Session Management

CKApplication and CKSession classes are for session management. CKSession
objects have a hash of arbitary objects and information about browser name, IP
address, etc. However, you can’t set objects that can’t be marshal(IO, Proc, etc.) to
the session with default database manager CKSessionStore::FileStore.

Automatic session management

Sessions can also be managed automatically. CGIKit reads and saves sessions in
automatic session management. If you use automatic session management, ses-
sions are always created when accsessed CGIKit applications.

Set true for CKApplication#manage_session to use automatic session management
(the default value is false).

Basic control

Getting sessions

Session objects are get with CKApplication#session. The method returns a new
session objects if session don’t exist.

List 5-1: Getting a session

session = application.session
p session #-> <CKSession:0x....>

Getting and setting session data

You can get and set session data with the same interface as hash.

List 5-2: Getting and settiong session data

session['key'] = 'value'
session['array'] = [1,2,3,4,5]
p session['key'] #-> 'value'
p session['array'] #-> [1,2,3,4,5]
30

Session Management
Saving sessions

Call CKApplication#save_session method to save sessions. However, it is
unnecessary on automatic session management.

Closing or clearing sessions

Note the ways of deleting sessions are different in manual session management and
automatic one. Call CKApplication#clear_session in manual, CKSes-
sion#clear in automatic.

CKSession#clear flags for deleting sessions. A session data is deleted if you call
the method, however the session is not deleted. The session is deleted completely
when saving sessions by automatic session management.

Saving session IDs

Session IDs are saved in URLs or cookies that the same expiration time with the
session. You can set expires of the cookies for session_cookie_expires.

Set up methods of saving session IDs with the following attributes.

Authorization

Session expiration time

Session has expiration time. Exception SessionTimeoutError is raised when
accessed with expired session.

Session expiration time is specified with seconds in "timeout" attribute
of CKApplication. Timeout is time progressed with seconds than "time-
out" after last accessed time for the session. You make sessions postpone

Table 5-1: Methods for saving session IDs (CKApplication class)

Attribute Default Description

store_in_url true Stores session IDs in URLs.

store_in_cookie true Stores session IDs in cookies.

session_cookie_
expires

604800

(a week)
Expiry date of cookie for session. If you
set the value to nil, session cookies will be
invalid when closing browser.
31

Session Management
indefinitely by setting 0 for "timeout" attribute. Sessions that session
IDs don’t exist is also timeout.

Browsers and IP addresses

Sessions can authorize by browsers and IP addresses. Exception SessionAuthoriza-
tionError is raised when accessed with browser or IP address that are different
from ones when a session created.

Set up methods of authorization with the following attributes. If the attributes is
true, the mechanism is enabled.

Handling session errors

To process for handling session errors, override CKApplica-
tion#handle_session_error and return a component to display. The hook
method is called when errors for timeout or authorization are raised.

List 5-3: Overriding CKApplication#handle_error

class CKApplication
 def handle_error(error)
 if error.class == CKSession::SessionTimeoutError then
 # ... code for timeout
 elsif error.class == CKSession::SessionAuthorizationError then
 # ... code for authorizaion error
 end

 error_page = page @error_page
 error_page.error = error
 error_page.debug = @debug
 error_page
 end
end

Table 5-2: Methods for authorizing sessions (CKApplication class)

Attribute Default Description

auth_by_user_agent false Authorizes by browser.

auth_by_remote_addr false Authorizes by IP address.
32

Session Management
Database manager

Database manager objects, such as CKSessionStore::FileStore, save sessions. The
objects has these 3 methods, implement the methods if you develop or customize
database manager class.

Other notes

Permission error

Permission error can be raised when you create sessions. The reason is that you
don’t have permission to write a session file or create a temporary directory on a
directory for saving session. If the error is raised, change permission the directory.

Deleting session files

Session files for saving sessions that the same number of session IDs are gener-
ated. The session files are deleted when raising timeout or deleting sessions by
calling clear methods, however you have to delete the files manually.

Table 5-3: Methods of database manager

Method Description

save Saves the session.

clear Clear the session.

restore Returns session restored from the saved.
33

Deploying Applications
Deploying Applications

How to deploy CGIKit applications is same as generic CGI applications. An exam-
ple in this case is Examples application attached CGIKit. Server configuration for
the examples is the following.

Installing applications

Copy applications to CGI directory and change permission of startup scripts to
executable.

List 6-1: Changing permission after copying Examples

[localhost:samples] user% cp -R Examples /var/www/cgi-bin
[localhost:samples] user% cd /var/www/cgi-bin/Examples
[localhost:/var/www/cgi-bin/Examples] user% chmod 755 Examples.cgi

URLs for the applications

URLs for installed applications are path of startup scripts. For example, a URL for
Examples the above is http://localhost/cgi-bin/Examples/Examples.cgi.

Managing resources

Resources directories manage resource files like image files or preference files.
The directories are resources directory and web server resources directory setted
for resources and web_server_resources attributes of CKApplication.

Table 6-1: Server configuration

Preference Description

Host name localhost

Document root /var/www/htdocs

CGI directory /var/www/cgi-bin
34

Deploying Applications
Resources and web server resources

Resources are files not sent to browsers, web server resources are files to send to
browsers. Locate web server resources directory in document root of web server.

Accessing to resources

Use CKResourceManage to access to resources. You can get CKResourceManager
object with CKApplication#resource_manager.

Main methods of CKResourceManager are url() and path(). url() returns URLs
for resources, path() does absolute file paths. url() works only for resources in web
server resources directory. You can t get URLs for resources in resources directory.

An example: displaying an image file

CKImage can display resource files as image. Do setting the following to display
an image file (cgikit.png) in ImagePage of Examples.

1. move resources directory to path enables displaying images.

2. set path of the resource directory for resource attribute of CKAppication.

3. set the image file name for file attribute of CKImage.

List 6-2: move resources directory

[localhost:/var/www/cgi-bin/Examples] user% mv resources ../../
htdocs

List 6-3: set path of resources directory (Example.cgi)

app = CKApplication.new
app.web_server_resources = '../../htdocs/resources'
app.run

Table 6-2: Methods of CKResourceManager

Methods Description

url(name) Returns the public URL for the specified resource
when it is under the web server resources direc-
tory. Otherwise returns nil.

path(name) Returns the file path of the specified resource.

bytedata(name) Returns a CKByteData object for the specified
resource.

content_type(path) Finds the content type for extension of the speci-
fied path. If the path don’t have extension, returns
nil.
35

Deploying Applications
List 6-4: set an image file name of file attribute (ImagePage.ckd)

FileInResource : CKImage {
 alt = "File in resource direcory";
 file = "cgikit.png";
}

This is an example to display static an image file. CKImage can display dinami-
cally using with data attribute.

Debugging

Running on command-line

Applications run on offline-mode when you run them on command-line. Input
form data for the applications in name=value format and push Ctrl-D to run.

List 6-5: Running on offline-mode

[localhost:/cgi-bin/Examples] user% ./Examples.cgi
(offline mode: enter name=value pairs on standard input)
Ctrl-D
Content-Type: text/html

<html>
<head>
<title>Examples</title>
</head>
<frameset cols="200,*">
 <frame name="Index" src="?element_id=IndexPage">
 <frame name="Contents" src="?element_id=IntroductionPage">
 <noframes>
 <body>
 Use other browser.
 </body>
 </noframes>
</frameset>

Checking attributes of elements

If you set true to check_attributes attribute of CKApplication, CGIKit checks
attributes of elements on runtime. It raises errors if nonexistent attributes are setted
or required attributes aren t setted.
36

Deploying Applications
Logging

CKLog is a simple logging class with 5 debug levels, It writes log messages higher
than setted level. The debug level is DEBUG < INFO < WARN < ERROR <
FATAL .

Options

Logging options are the following. Use log_options attribute of CKApplication
to initialize CKLog objects instead of setting each options to do directly.

List 6-6: Setting logging options

options = {‘level’ => CKLog::DEBUG,
 ‘name’ => ‘CGIKit Application’,
 ‘file’ => ‘log.txt’,
 ‘max_file_size’ => 1000000}

app = CKApplication.new
app.log_options = options
app.run

Table 6-3: Logging methods

Method Description

debug(message) Write message on DEBUG level.

info(message) Write message on INFO level.

warn(message) Write message on WARN level.

error(message) Write message on ERROR level.

fatal(message) Write message on FATAL level.

Table 6-4: Options

Option Description

level Debug level.

name Program name.

out Output. By default is standard error.

file File name to output logs. Set this or out option.

max_file_size Max file size (this enables if you set file to output).
If size of the file is over this size, FileSizeError
is raised.
37

Deploying Applications
List 6-7: Writing a log message

class MainPage < CKComponent
 def logging
 log = CKLog.new(application.log_options)
 log.debug ‘log message’
 end
end

Performance tuning applications

mod_ruby

mod_ruby is a module to embed Ruby interpreter in Apache web server. Some
processes are needed to use CGIKit with it.

Using with mod_ruby is experimental.

Saving name space of components

If you don t save name space of components in mod_ruby, CGIKit applications
can affect each other. Then, create subclasses of CKApplication to save the name
space.

Create a new file except a startup script and define a subclass of CKApplication in
thi file (loaded in the startup script). Change the subclass name along with the
application.

List 6-8: Defining a subclass of CKApplication in "application.rb" file

class Application < CKApplication
end

Next, define each components inside the subclass.

List 6-9: Defining Application::MainPage component

class Application
 class MainPage < CKComponent
 ...
 end
end

You can use subclasses of CKApplication but for mod_ruby. If you collect meth-
ods related whole of an application into the subclass, you use effectively it because
CKApplication objects are shared in each components.
38

Deploying Applications
Changing an adapter to CKAdapter::ModRuby

CGIKit communicates with browsers using adapters. By default, CGI and
mod_ruby adapters are selected automatically. If you use customized adapter or
adapters don t be selected, specify an adapter for interface attribute of CKAppli-
cation.

List 6-10: Changing an adapter to mod_ruby

#!/usr/local/bin/ruby

require ‘cgikit’
require ‘application’

app = Application.new
app.interface = CKAdapter::ModRuby
app.run

WEBrick

WEBrick is a toolkit to builled web sesrver. To work CGIKit application with
WEBrick, create an instance of the application and mount it as servlet.

Handlers for CGIKit are 3 types.

以下は ApplicationHandlerを使った起動スクリプトです（付属サンプルのHelloWorld
に添付してあります）。このスクリプトは、コンポーネントのパスとポート番号を指定して起
動します。

A startup script using with

ApplicationHandler

 is the following (attached in
HelloWorld an example application). Specify component path and port number to
run.

% webrick-app.rb ‘.’ 8080

List 6-11:

Handlers for CGIKit

Handler Description

WEBrick::CGIKitServ-
let::PathHandler

Handler that receives component path in the sec-
ond argument.

WEBrick::CGIKitServ-
let::HashHandler

Handler that receives a hash for accessors of
CKApplication in the second argument.

WEBrick::CGIKitServ-
let::ApplicationHan-
dler

Handler that receives a CKApplication object in
the second argument.
39

Deploying Applications

List 6-12:

Using WEBrick with ApplicationHandler (webrick-app.rb)

webrick-app.rb [component_path [port]]
require 'webrick'
require 'cgikit'

path = ARGV.shift || Dir.pwd
port = (ARGV.shift || 8080).to_i

app = CKApplication.new
app.component_path = path

server = WEBrick::HTTPServer.new({:Port => port})
server.mount('/', WEBrick::CGIKitServlet::ApplicationHandler, app)

trap("INT"){ server.shutdown }
server.start
40

	Contents
	Install
	System Requirements
	Installing CGIKit
	Loading Libraries

	Architecture
	Basic Concept
	Component
	Composition
	Template (.html)
	Comment

	Binding (.ckd)
	Literals

	Code (.rb)
	Process of Binding
	Accessor Method
	Form Data

	Elements
	Attribute
	List of Elements

	Process of CGIKit
	Startup
	Creates a CKApplication object
	Sets parameters of the CKApplication object
	Calls CKApplication#run
	HelloWorld.cgi

	After startup

	Dynamic Elements
	Optional HTML attributes and “other” attribute
	Validating input
	Example: validating mail addresses
	Format for rules
	Converting data types
	Operators

	General elements
	CKString
	CKHyperlink
	CKImage

	Flow control
	CKConditional
	CKRepetition

	Form
	CKForm
	CKTextField
	CKText
	CKCheckbox
	checked attribute
	value and selection attributes

	CKRadioButton
	CKPopUpButton
	CKBrowser
	CKSubmitButton
	CKResetButton
	CKFileUpload

	Reusable Components
	CKFrame
	CKComponent
	CKPartsMaker

	CKContent
	CKGenericElement

	Cookie
	Class CKCookie
	Controlling cookie objects
	Creating cookies
	Getting cookies from a request object
	Setting cookies to a response object
	Removing cookies from browser
	Removing cookies from a response object

	Session Management
	Automatic session management
	Basic control
	Getting sessions
	Getting and setting session data
	Saving sessions
	Closing or clearing sessions

	Saving session IDs
	Authorization
	Session expiration time
	Browsers and IP addresses
	Handling session errors

	Database manager
	Other notes
	Permission error
	Deleting session files

	Deploying Applications
	Installing applications
	URLs for the applications

	Managing resources
	Resources and web server resources
	Accessing to resources
	An example: displaying an image file

	Debugging
	Running on command-line
	Checking attributes of elements
	Logging
	Options

	Performance tuning applications
	mod_ruby
	Saving name space of components
	Changing an adapter to CKAdapter::ModRuby

	WEBrick

